આપેલ સમીકરણો $ x + y -az = 1$ ; $2x + ay + z = 1$ ; $ax + y -z = 2$ માટે . . .
$a \ne 1$ માટે એકાકી ઉકેલ મળે.
જો સમીકરણોનો ઉકેલ ખાલીગણ હોય તો $'a'$ ની કિમંત $1$ થવીજ જોઇયે.
$a \in \left\{ {1,\frac{{ - 1 \pm \sqrt 5 }}{2}} \right\}$ માટે સમીકરણોનો ઉકેલ ખાલીગણ થાય.
$a = \frac{{ - 1 \pm \sqrt 5 }}{2}$ માટે સમીકરણોને અનંત ઉકેલ મળે.
$x$ નું મૂલ્ય શોધો : $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$
જો $S$ એ $\lambda \in \mathrm{R}$ ની બધી કિમતોનો ગણ છે કે જ્યાં સુરેખ સંહિતા
$2 x-y+2 z=2$
$x-2 y+\lambda z=-4$
$x+\lambda y+z=4$
ને એક પણ ઉકેલ ના હોય તો ગણ $S$ માં
$\lambda$ ની કેટલી વાસ્તવિક કિમંતો માટે સમીકરણ સંહતિઓ $2 x-3 y+5 z=9$ ; $x+3 y-z=-18$ ; $3 x-y+\left(\lambda^{2}-1 \lambda \mid\right) z=16$ નો ઉકેલ ખાલીગણ થાય.
સુરેખ સમીકરણ સંહતિ
$2 x-y+3 z=5$
$3 x+2 y-z=7$
$4 x+5 y+\alpha z=\beta$
માટે નીચેના માથી ક્યૂ સાચું નથી?
જો $A = \int\limits_1^{\sin \theta } {\frac{t}{{1 + {t^2}}}} dt$ અને $B = \int\limits_1^{\cos ec\theta } {\frac{dt}{{t\left( {1 + {t^2}} \right)}}} $ , (કે જ્યાં $\theta \in \left( {0,\frac{\pi }{2}} \right))$, હોય તો $\left| {\begin{array}{*{20}{c}}
A&{{A^2}}&{ - B}\\
{{e^{A + B}}}&{{B^2}}&{ - 1}\\
1&{{A^2} + {B^2}}&{ - 1}
\end{array}} \right|$ ની કિમંત મેળવો.